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Abstract
Exact analytical results for the dynamics of two interacting qubits, each of
which is embedded in its own spin star bath, are presented. The time evolution
of the concurrence and the purity of the two-qubit system are investigated for
finite and infinite numbers of environmental spins. The effect of qubit–qubit
interactions on the steady state of the central system is investigated.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Exactly solvable models play a very useful role in various fields of physics. They help
to improve our understanding of physical processes and allow us to gain more insight into
complicated phenomena that take place in nature [1]. One may recall, for instance, the
usefulness of exactly solvable models such as the harmonic oscillator, the nuclear shell model
and the Ising model, to name a few. From a practical point of view, exactly solvable models
serve as a very convenient tool for testing the accuracy of numerical algorithms, often used in
the study of problems that cannot be analytically solved, due to the complexity of the systems
under investigation. This is usually the case in the field of open quantum systems, where one
faces uncontrolled degrees of freedom of the environments.

Let us recall that realistic quantum systems are influenced by their surrounding through,
in general, complicated coupling interactions, leading them to lose their coherences [2]. This
is referred to as the decoherence process, which is the main obstacle to quantum information
processing [3–5]. The latter can be improved by exploiting the entanglement, i.e. the nonlocal
quantum correlations that exist between quantum systems [6]. This resource has no classical
analogue, and it turns out to be of great importance in quantum teleportation and quantum
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computing [7–12]. It is worth mentioning that over the last few years, many proposals have
been made for the implementation of quantum information processing. Solid-state systems
are very promising [13, 14] and have been the subject of many investigations. Much attention
was devoted to the study of the decoherence and the entanglement of simple qubit systems that
are coupled to spin environments [15–19]. Thus, new exactly solvable models describing the
dynamics of qubits within spin baths are highly welcome. Recently, the spin star configuration,
initially proposed in [20], has been extensively investigated [21–25]. An exact treatment of the
dynamics of two qubits coupled to the common spin star bath via XY interactions is presented
in [26, 27]. In this paper, we propose to investigate analytically the dynamics when the two
qubits interact with separate spin star baths.

This paper is organized as follows. In section 2, the model Hamiltonian is introduced.
In section 3, we present a detailed derivation of the time evolution operator. In section 4, we
investigate the dynamics of the qubits at a finite number of the environmental spins for some
particular initial conditions. In section 5, we study the case of an infinite number of spins
within the environments. Section 6 is devoted to the second-order master equation, where the
short-time behaviour is explored. We end the paper with a short summary.

2. Model

2.1. Hamiltonian

The system under study consists of two two-level systems (e.g. spin- 1
2 particles), each of which

is embedded in its own spin star environment composed of N spin- 1
2 . The central particles

interact with each other through an Ising interaction; the corresponding coupling constant is
equal to 4δ, where the factor 4 is introduced for later convenience. We shall assume that each
qubit couples to its environment via Heisenberg XY interaction whose coupling constant, α,
is scaled by

√
N in order to ensure good thermodynamic behaviour. From here on, the spin

environments will be denoted by B1 and B2.
The Hamiltonian for the composite system has the form

H = H0 + HS1B1 + HS2B2 , (1)

where

H0 = 4δS1
z S

2
z , (2)

and

HSiBi
= α√

N

(
Si

+

N∑
k=1

Sik
− + Si

−
N∑

k=1

Sik
+

)
, i = 1, 2. (3)

Here �S1 and �S2 denote the spin operators corresponding to the central qubits, whereas
�Sik denotes the spin operator corresponding to the kth particle within the ith environment.

Introducing the total spin operators �J = ∑N
k=1

�S1k and �J = ∑N
k=1

�S2k , one can rewrite the
full Hamiltonian as

H = 4δS1
z S

2
z +

α√
N

(
S1

+J− + S1
−J+ + S2

+J− + S2
−J+

)
. (4)

The dynamics of the two-qubit system is fully described by its density matrix ρ(t) obtained
by tracing the time-dependent total density matrix ρtot(t), describing the composite system,
with respect to the environmental degrees of freedom:

ρ(t) = trB1+B2 [ρtot(t)] = trB1+B2 [U(t)ρtot(0)U†(t)]. (5)

In the above, U(t) and ρtot(0) designate the time evolution operator and the initial total density
matrix respectively.
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2.2. Initial conditions

At t = 0, the central qubits are assumed to be uncoupled from environments; the latter are
in thermal equilibrium at infinite temperature. This means that the initial total density matrix
can be written as

ρtot(0) = ρ(0) ⊗ 1
2N

⊗ 1
2N

, (6)

where ρ(0) is the initial density matrix of the two-qubit system and 1 is the unit matrix on the
space C

2⊗N . The former can be expressed as

ρ(0) =
∑
k,�

ρ0
k�|χk〉〈χ�|, (7)

where |χ�〉 ∈ {|−−〉, |− +〉, |+ −〉, |+ +〉} for � = 1, 4.
Recall that the basis state vectors of C

2⊗N are given by |j,m〉, with κ � j � N/2 (κ = 0
for N even and κ = 1/2 for N odd), and −j � m � j (h̄ = 1). The degeneracy corresponding
to each value j of the collective spin operator is equal to [28]

ν(N, j) =
(

N

N/2 − j

)
−
(

N

N/2 − j − 1

)
. (8)

Then the time-dependent reduced density matrix can be expressed as

ρ(t) = 2−2N
∑
k,�

ρ0
k�

∑
j,m

∑
r,s

ν(N, j)ν(N, r)〈j, r,m, s|U(t)|χk〉〈χ�|U†(t)|j, r,m, s〉, (9)

where |j, r,m, s〉 = |j,m〉 ⊗ |r, s〉. Hence, our task reduces to finding the exact form of the
matrix elements of the time evolution operator; this makes the subject of the following section.

3. Derivation of the exact form of the time evolution operator

The Hamiltonian of our model does not depend on time. Consequently, the time evolution
operator is simply given by U(t) = exp(−iHt), which can be expanded in Taylor series as

U(t) =
∞∑

n=0

(−1)nt2n

(2n)!
(H)2n − i

∞∑
n=0

(−1)nt2n+1

(2n + 1)!
(H)2n+1. (10)

In order to derive analytical expressions for even and odd powers of the total Hamiltonian, we
note that H0 anticommutes with HS1B1 + HS2B2 :

[H0,HS1B1 + HS2B2 ]+ = 0. (11)

This can easily be shown using the following properties of spin- 1
2 operators: SzS± = ±S±

and S±Sz = ∓S±.
Furthermore, taking into account that H 2n

0 ≡ δ2n, we find that for n � 0,

H 2n =
n∑

�=0

(
n

�

)
(HS1B1 + HS2B2)

2�δ2(n−�). (12)

Hence, since HS1B1 commutes with HS2B2 , we only need to know the expressions of powers of
each of the latter operators. These are shown in appendix A.

It follows, using equations (A.1)–(A.4), that

(HS1B1 + HS2B2)
2� =

�∑
k=0

(
2�

2k

)
H 2k

S1B1
H

2(�−k)
S2B2

+
�−1∑
k=0

(
2�

2k + 1

)
H 2k+1

S1B1
H

2(�−k)−1
S2B2

=
( α√

N

)2�

[
�∑

k=0

(
2�

2k

)
D�k +

�−1∑
k=0

(
2�

2k + 1

)
L�k

]
. (13)
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where

D�k = diag[(J+J−)k(J+J−)�−k, (J+J−)k(J−J+)
�−k,

(J−J+)
k(J+J−)�−k, (J−J+)

k(J−J+)
�−k] (14)

and

L�k = antidiag[J+J+(J−J+)
k(J−J+)

�−k−1, J+J−(J−J+)
k(J+J−)�−k−1,

J−J+(J+J−)k(J−J+)
�−k−1, J−J+(J+J−)k(J+J−)�−k−1]. (15)

Afterwards, it is straightforward to show that

(HS1B1 + HS2B2)
2� =

(
α√
N

)2�

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F +
1 0 0 J+J+

F−
4√

J−J+J−J+

0 F +
2 J+J−

F−
3√

J−J+J+J−
0

0 J−J+
F−

2√
J+J−J−J+

F +
3 0

J−J−
F−

1√
J+J−J+J−

0 0 F +
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where

F±
1 = 1

2

[(√
J+J− +

√
J+J−

)2� ± (√J+J− −
√
J+J−

)2�]
, (17)

F±
2 = 1

2

[(√
J+J− +

√
J−J+

)2� ± (√J+J− −
√
J−J+

)2�]
, (18)

F±
3 = 1

2

[(√
J−J+ +

√
J+J−

)2� ± (√J−J+ −
√
J+J−

)2�]
, (19)

F±
4 = 1

2

[(√
J−J+ +

√
J−J+

)2� ± (√J−J+ −
√
J−J+

)2�]
. (20)

Inserting equation (16) into equation (12) yields

H 2n = 1

2

×

⎛
⎜⎜⎜⎝
(
M+

1

)n
+
(
M−

1

)n
0 0 	4n

0
(
M+

2

)n
+
(
M−

2

)n
	3n 0

0 	2n

(
M+

3

)n
+
(
M−

3

)n
0

	1n 0 0
(
M+

4

)n
+
(
M−

4

)n

⎞
⎟⎟⎟⎠ , (21)

where

	1n = J−J−

(
M+

1

)n − (M−
1

)n
√

J+J−J+J−
, 	2n = J−J+

(
M+

2

)n − (M−
2

)n
√

J+J−J−J+
, (22)

	3n = J+J−

(
M+

3

)n − (M−
3

)n
√

J−J+J+J−
, 	4n = J+J+

(
M+

4

)n − (M−
4

)n
√

J−J+J−J+
, (23)

with

M±
1 = δ2 +

α2

N

(√
J+J− ±

√
J+J−

)2
, (24)

M±
2 = δ2 +

α2

N

(√
J+J− ±

√
J−J+

)2
, (25)
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M±
3 = δ2 +

α2

N

(√
J−J+ ±

√
J+J−

)2
, (26)

M±
4 = δ2 +

α2

N

(√
J−J+ ±

√
J−J+

)2
. (27)

The matrix elements of H 2n+1 can readily be obtained by multiplying the right-hand side of
(21) with H. The results are also presented in appendix A.

Having derived the explicit expressions of powers of the total Hamiltonian, we can easily
verify that the elements of the time evolution operator, obtained by inserting equations (21)
and (A.5)–(A.28) into equation (10), are given by

U11(t) = 1

2

⎧⎨
⎩cos

(
t

√
M+

1

)
+ cos

(
t

√
M−

1

)− iδ

⎡
⎣ sin

(
t
√
M+

1

)
√
M+

1

+
sin
(
t

√
M−

1

)
√
M−

1

⎤
⎦
⎫⎬
⎭ , (28)

U21(t) = −J−
iα/2√
NJ+J−

{√
J+J− +

√
J+J−√

M+
1

sin
(
t

√
M+

1

)

−
√

J+J− − √
J+J−√

M−
1

sin
(
t

√
M−

1

)}
, (29)

U31(t) = −J−
iα/2√
NJ+J−

{√
J+J− +

√
J+J−√

M+
1

sin
(
t

√
M+

1

)
+

√
J+J− − √

J+J−√
M−

1

sin
(
t

√
M−

1

)}
,

(30)

U41(t) = J−J−
1

2
√

J+J−J+J−

⎧⎨
⎩ cos

(
t

√
M+

1

)− cos
(
t

√
M−

1

)

− iδ

⎡
⎣ sin

(
t
√
M+

1

)
√
M+

1

−
sin
(
t

√
M−

1

)
√
M−

1

⎤
⎦
⎫⎬
⎭ , (31)

U22(t) = 1

2

⎧⎨
⎩cos

(
t

√
M+

2

)
+ cos

(
t

√
M−

1

)
+ iδ

⎡
⎣ sin

(
t
√
M+

2

)
√
M+

2

+
sin
(
t

√
M−

2

)
√
M−

2

⎤
⎦
⎫⎬
⎭ , (32)

U12(t) = −J+
iα/2√
NJ−J+

⎧⎨
⎩

√
J+J− +

√
J−J+√

M+
2

sin
(
t

√
M+

2

)

−
√

J+J− − √
J−J+√

M−
2

sin
(
t

√
M−

2

)⎫⎬⎭ , (33)

U32(t) = J−J+
1

2
√

J+J−J−J+

⎧⎨
⎩ cos

(
t

√
M+

2

)− cos
(
t

√
M−

2

)

+ iδ

⎡
⎣ sin

(
t
√
M+

2

)
√
M+

2

−
sin
(
t

√
M−

2

)
√
M−

2

⎤
⎦
⎫⎬
⎭ , (34)
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U42(t) = −J−
iα/2√
NJ+J−

⎧⎨
⎩

√
J+J− +

√
J−J+√

M+
2

sin
(
t

√
M+

2

)

+

√
J+J− − √

J−J+√
M−

2

sin
(
t

√
M−

2

)⎫⎬⎭ , (35)

U33(t) = 1

2

⎧⎨
⎩cos

(
t

√
M+

3

)
+ cos

(
t

√
M−

3

)
+ iδ

⎡
⎣ sin

(
t
√
M+

3

)
√
M+

3

+
sin
(
t

√
M−

3

)
√
M−

3

⎤
⎦
⎫⎬
⎭ , (36)

U13(t) = −J+
iα/2√
NJ−J+

{√
J+J− +

√
J−J+√

M+
3

sin
(
t

√
M+

3

)

−
√
J+J− − √

J−J+√
M−

3

sin
(
t

√
M−

3

)⎫⎬⎭ , (37)

U23(t) = J+J−
1

2
√

J−J+J+J−

⎧⎨
⎩cos

(
t

√
M+

3

)− cos
(
t

√
M−

3

)

+ iδ

⎡
⎣ sin

(
t
√
M+

3

)
√
M+

3

−
sin
(
t

√
M−

3

)
√
M−

3

⎤
⎦
⎫⎬
⎭ , (38)

U43(t) = −J−
iα/2√
NJ+J−

⎧⎨
⎩

√
J+J− +

√
J−J+√

M+
3

sin
(
t

√
M+

3

)

+

√
J+J− − √

J−J+√
M−

3

sin
(
t

√
M−

3

)⎫⎬⎭ , (39)

U44(t) = 1

2

⎧⎨
⎩cos

(
t

√
M+

4

)
+ cos

(
t

√
M−

4

)− iδ

⎡
⎣ sin

(
t
√
M+

4

)
√
M+

4

+
sin
(
t

√
M−

4

)
√
M−

4

⎤
⎦
⎫⎬
⎭ , (40)

U24(t) = −J+
iα/2√
NJ−J+

⎧⎨
⎩

√
J−J+ +

√
J−J+√

M+
4

sin
(
t

√
M+

4

)

−
√
J−J+ − √

J−J+√
M−

4

sin
(
t

√
M−

4

)⎫⎬⎭ , (41)

U34(t) = −J+
iα/2√
NJ−J+

⎧⎨
⎩

√
J−J+ +

√
J−J+√

M+
4

sin
(
t

√
M+

4

)

+

√
J−J+ − √

J−J+√
M−

4

sin
(
t

√
M−

4

)⎫⎬⎭ , (42)

6



J. Phys. A: Math. Theor. 42 (2009) 315301 Y Hamdouni

U14(t) = J+J+
1

2
√

J−J+J−J+

⎧⎨
⎩cos

(
t

√
M+

4

)− cos
(
t

√
M−

4

)

− iδ

⎡
⎣ sin

(
t
√
M+

4

)
√
M+

4

−
sin
(
t

√
M−

4

)
√
M−

4

⎤
⎦
⎫⎬
⎭ . (43)

In the following section, we are going to investigate the time evolution of some measures that
quantify the decoherence and the entanglement of the central qubits system.

4. Concurrence and purity evolution

There exist many measures for entanglement. Here we use the concurrence, defined by [29]

C(ρ) = max

{
0, 2 max[

√
λi] −

4∑
i=1

√
λi

}
, (44)

where the quantities λi are the eigenvalues of the operator ρ(t)(σy ⊗ σy)ρ(t)∗(σy ⊗ σy). The
above measure is equal to 1 for maximally entangled states and is equal to 0 for separable
states. On the other hand, as is well known, due to the decoherence process, pure states evolve
into mixed ones while the degree of mixing of mixed states increases. A suitable measure for
decoherence is the purity P(t), given by the trace of the square of the reduced density matrix
of the central two-qubit system, that is,

P(t) = tr ρ(t)2. (45)

The above measure is equal to 1
4 for maximally mixed states and is equal to 1 for pure states.

It turns out that the density matrices corresponding to the initial product states |ε1ε2〉,
where εi ≡ ±, are always diagonal. The analysis of the dynamics in this case reveals that
if the qubits are prepared in one of the above states, they remain unentangled regardless of
the values of N and δ, in contrast to the case of a common bath where entanglement may be
generated in the case of the initial product states |±,∓〉. Furthermore, it is found that for
finite values of α, the purity decreases slower with the increase of the interaction strength,
δ. This decay is of Gaussian nature, as expected for non-Markovian spin dynamics [19] (see
section 6).

The matrix elements of the reduced density matrices corresponding to the states
|e±〉 = 1√

2
(|− +〉 ± |+ −〉) and |v±〉 = 1√

2
(|+ +〉 ± |− −〉) are shown in appendix B. The

evolution in time of the concurrence and the purity corresponding to the above maximally
entangled states is practically the same. This is in clear agreement with [18] where, with a
different model Hamiltonian, it is shown that Bell’s maximally entangled states all display the
same behaviour when the two qubits are located in different spin environments. The author
also concluded that if the qubits interact with the same spin bath, then we can distinguish
between the behaviour of the concurrence of the states 1√

2
(|− +〉 ± |+ −〉) on the one hand

and that corresponding to the states 1√
2
(|+ +〉 ± |−−〉) on the other hand. In [27], we have

shown that the singlet state is decoherence free whereas the concurrence of all the other Bell
states decays in time. However, we found that the state |e+〉 is less sensitive to the effect
of the environment than the states |v±〉. This implies a dependence of the behaviour of the
concurrence on the relative orientation of the two qubits if they interact with the same bath.
The above factor has no effect on the dynamics in the case of separate environments. In what
follows, we only present the results obtained for the singlet state.
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Figure 1. The evolution in time of the concurrence (solid curve) and the purity (dashed curve)
corresponding to the singlet state for δ = α and N = 10.

0 5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

α t

C( )t

P( )t

Figure 2. The evolution in time of the concurrence (solid curve) and the purity (dashed curve)
corresponding to the singlet state for δ = 4α and N = 10.

It is found that, for fixed δ, the concurrence and the purity saturate as the number of spins
increases. This naturally suggests the investigation of the case N → ∞ (see the following
section). In figures 1 and 2 we have plotted the concurrence and the purity, obtained from the
analytical solution for, respectively, δ = α and δ = 4α with N = 10 in both cases. We see that
for small values of the coupling constant, the concurrence decays from its initial maximum
value Cmax = 1 and then vanishes at a certain moment of time (i.e. entanglement sudden
death [30]). For sufficiently large δ, the purity and the concurrence decay less, displaying fast
oscillations. At long times, they converge to certain asymptotic values which increase with the
increase of the strength of interaction. Note that it may happen that the concurrence revives
at a later time which depends, of course, on the parameters of the model. It is also interesting
to mention that at short times, the concurrence and the purity are identical. The intervals at
which this occurs are longer for large δ. The investigation of the short-time behaviour will
be carried out in section 6 through the solutions of the second-order master equation. Finally
let us remark that although we have only considered infinite temperature, we can ensure that

8
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for long-range antiferromagnetic Heisenberg interactions within the baths, low temperatures
will have the same effect on decoherence and entanglement of the qubits as strong coupling
constants.

5. The case of an infinite number of bath spins

In the limit N → ∞, the operators
√

J±J∓/N converge to the positive real random variable r
whose probability density function is given by

r 
→ f (r) = 4r e−2r2
, r � 0. (46)

Indeed, it has been shown in [25, 26] that the operator J+/
√

N converges to the complex
normal random variable z with the probability density function

z 
→ 2

π
e−2|z|2 . (47)

Expressing z in terms of the polar coordinates r and φ, i.e., z = reiφ , simply gives |z|2 = r2.
Then integrating the corresponding probability density function over the variable φ from 0 to
2π yields

dP(r) = f (r) dr = 2

π

∫ 2π

0
dφr dr e−2r2

= 4r e−2r2
dr, (48)

from which (46) follows.
Hence, we can ascertain that

lim
N→∞

2−2N trB1+B2�
(√

J±J∓/N,
√
J±J∓/N

) = 16
∫ ∞

0

∫ ∞

0
rs e−2(r2+s2)�(r, s) dr ds, (49)

where �(r, s) is some complex-valued function for which the integrals on the right-hand side
of equation (49) converge.

Using the above result, one can express the nonzero elements of the reduced density
matrix corresponding to the initial state 1√

2
(|− +〉 − |+ −〉), in the thermodynamic limit, as

ρ11(t) = ρ44(t) = 1
4 [�+(t) + �−(t)], (50)

ρ22(t) = ρ33(t) = 1
4 [ϒ+(t) + ϒ−(t) + �+(t) + �−(t)], (51)

ρ23(t) = − 1
8 [ϒ+(t) + ϒ−(t) + �+(t) + �−(t) + 2�(t)], (52)

where (we set α = 1 for the sake of shortness)

�±(t) = 16
∫ ∞

0

∫ ∞

0
rs e−2(r2+s2) (r ± s)2

δ2 + (r ± s)2
sin2

(
t
√

δ2 + (r ± s)2
)

dr ds, (53)

ϒ±(t) = 16
∫ ∞

0

∫ ∞

0
rs e−2(r2+s2) cos2

(
t
√

δ2 + (r ± s)2
)

dr ds, (54)

�±(t) = 16
∫ ∞

0

∫ ∞

0
rs e−2(r2+s2) δ2

δ2 + (r ± s)2
sin2 (t√δ2 + (r ± s)2

)
dr ds, (55)

�(t) = 16
∫ ∞

0

∫ ∞

0
rs e−2(r2+s2)

{
cos
(
t
√

δ2 + (r + s)2
)

cos
(
t
√

δ2 + (r − s)2
)

+ δ2 sin
(
t
√

δ2 + (r + s)2
)

δ2 + (r + s)2

sin
(
t
√

δ2 + (r − s)2
)

δ2 + (r − s)2

}
dr ds. (56)

9
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Unfortunately, the above functions cannot be evaluated analytically; one should have
recourse to numerical integration. This task can be significantly simplified by transforming
the double integration into a single one, which is much easier to carry out. To do that, note
that a simple analysis of the expressions of the functions �±(t), ϒ±(t) and �±(t) leads to the
evaluation of the probability density functions Q(μ) and R(η) corresponding, respectively, to
the random variables μ = r + s and η = r − s (see [31] for a similar situation). We show in
appendix C that

Q(μ) = [2μ − √
π eμ2

(1 − 2μ2) erf(μ)] e−2μ2
, μ � 0; (57)

R(η) = 1
2 {2|η| +

√
π eη2

(1 − 2η2)[1 − erf(|η|)]} e−2η2
, η ∈ �. (58)

Functions (53)–(55) can easily be expressed in terms of the functions Q(μ) and R(η). For
example, we have

�+(t) =
∫ ∞

0
Q(μ)

μ2

δ2 + μ2
sin2

(
t
√

δ2 + μ2
)

dμ, (59)

�−(t) =
∫ ∞

−∞
R(η)

η2

δ2 + η2
sin2

(
t
√

δ2 + η2
)

dη. (60)

It should be noted that in contrast to r and s, the random variables η and μ are not independent.
The function �(t) cannot be further simplified and should be evaluated using the double
integration over the variables r and s. Nevertheless, using the Riemann–Lebesgue lemma, we
can infer that

lim
t→∞ �(t) = �(∞) = 0. (61)

We find in a similar way that the remaining functions tend asymptotically to

�+(∞) = 1

2

∫ ∞

0
Q(μ)

μ2

δ2 + μ2
dμ, (62)

�−(∞) = 1

2

∫ ∞

−∞
R(μ)

μ2

δ2 + μ2
dμ, (63)

ϒ±(∞) = 1

2
, (64)

�+(∞) = 1

2

∫ ∞

0
Q(μ)

δ2

δ2 + μ2
dμ, (65)

�−(∞) = 1

2

∫ ∞

−∞
R(μ)

δ2

δ2 + μ2
dμ. (66)

Note that

�±(∞) + �±(∞) = 1
2 , (67)

10
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independent of the values of δ. It follows that the asymptotic density matrix can be expressed
as

ρ(∞) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

4
0 0 0

0
2 − �

4
−2 − �

8
0

0 −2 − �

8

2 − �

4
0

0 0 0
�

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (68)

where

� = �+(∞) + �−(∞). (69)

Before we study the general case, let us have a look at the two extreme cases: δ = 0 and
δ = ∞. It is easily seen from equations (62)–(66) that

lim
δ→0

�±(∞) = 0, lim
δ→0

�±(∞) = 1
2 . (70)

The corresponding asymptotic reduced density matrix reads as

ρ(∞)δ=0 =

⎛
⎜⎜⎝

1
4 0 0 0
0 1

4 − 1
8 0

0 − 1
8

1
4 0

0 0 0 1
4

⎞
⎟⎟⎠ , (71)

which has a concurrence and a purity identically equal to zero and 9/32, respectively. In
contrast, in the limit of strong coupling between the central qubits,

lim
δ→∞

�±(∞) = 1
2 , lim

δ→∞
�±(∞) = 0. (72)

Consequently,

ρ(∞)δ=∞ =

⎛
⎜⎜⎝

0 0 0 0
0 1

2 − 1
4 0

0 − 1
4

1
2 0

0 0 0 0

⎞
⎟⎟⎠ . (73)

A straightforward calculation shows that

lim
δ→∞

C(ρ(∞)) = 1
2 , lim

δ→∞
P(ρ(∞)) = 5

8 . (74)

We observe that the asymptotic concurrence and purity obtained here coincide, when δ → ∞,
with those obtained for the states |v±〉 in the case of a common spin bath. They are however
different from the asymptotic values corresponding to the state |e+〉 which are identically equal
to 1 (the state |e−〉 is stationary).

In general, since 0 � μ2/(μ2 + δ2) � 1, then

0 � � = 1

2

∫ ∞

0
Q(μ)

μ2

δ2 + μ2
dμ +

1

2

∫ ∞

−∞
R(μ)

μ2

δ2 + μ2
dμ

� 1

2

∫ ∞

0
Q(μ) dμ +

1

2

∫ ∞

−∞
R(μ) dμ = 1. (75)

This allows us to find the following explicit form of the asymptotic value of the concurrence:

C(∞) = max

{
0,

2 − 3�

4

}
. (76)
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Figure 3. The variation of C(∞) as a function of the coupling constant δ. The inset shows the
critical point δc. α is set to 1.

The latter can also be rewritten as

C(∞) =

⎧⎪⎨
⎪⎩

2 − 3�

4
for 0 � � � 2

3
,

0 for
2

3
� � � 1.

(77)

The variation of the asymptotic concurrence as a function of δ is shown in figure 3. It
can be seen that C(∞) remains zero up to a critical value δc after which it increases, to tend
asymptotically to 1

2 . The value of δc can be evaluated numerically:

δc = 0.342 842, �|δ=δc = 0.666 666. (78)

At the critical point, the density matrix reads as

ρc(∞) =

⎛
⎜⎜⎜⎝

1
6 0 0 0
0 1

3 − 1
6 0

0 − 1
6

1
3 0

0 0 0 1
6

⎞
⎟⎟⎟⎠ , (79)

and hence P(ρc(∞)) = 1
3 .

6. Second-order master equation

The aim of this section is to study the short-time behaviour of the dynamics. This will be
achieved by investigating the second-order master equation under Born approximation. In the
interaction picture, the above yield the following set of integro-differential equations:

˙̃ρ11(t) = −α2
∫ t

0
(2ρ̃11(s) − ρ̃22(s) − ρ̃33(s)) cos[2δ(t − s)] ds, (80)

˙̃ρ12(t) = −α2
∫ t

0
(2ρ̃12(s) e2iδ(t−s) − ρ̃34(s) e2iδ(t+s)) ds, (81)

˙̃ρ13(t) = −α2
∫ t

0
(2ρ̃13(s) e2iδ(t−s) − ρ̃24(s) e2iδ(t+s)) ds, (82)

12
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˙̃ρ14(t) = −α2
∫ t

0
2ρ̃13(s) cos[2δ(t − s)] ds, (83)

˙̃ρ22(t) = −α2
∫ t

0
(2ρ̃22(s) − ρ̃11(s) − ρ̃44(s)) cos[2δ(t − s)] ds, (84)

˙̃ρ23(t) = −α2
∫ t

0
2ρ̃23(s) cos[2δ(t − s)] ds, (85)

˙̃ρ24(t) = −α2
∫ t

0
(2ρ̃24(s) e2iδ(s−t) − ρ̃13(s) e−2iδ(t+s)) ds, (86)

˙̃ρ33(t) = −α2
∫ t

0
(2ρ̃33(s) − ρ̃11(s) − ρ̃44(s)) cos[2δ(t − s)] ds, (87)

˙̃ρ34(t) = −α2
∫ t

0
(2ρ̃34(s) e2iδ(s−t) − ρ̃12(s) e−2iδ(t+s)) ds, (88)

˙̃ρ44(t) = −α2
∫ t

0
(2ρ̃44(s) − ρ̃22(s) − ρ̃33(s)) cos[2δ(t − s)] ds. (89)

Here the tilde designates the interaction picture, namely ρ̃(t) = eiH0t ρ(t)e−iH0t . It is worth
mentioning that the integro-differential equations corresponding to the off-diagonal elements
(except ρ13) obtained from the second-order master equation in [27] are somewhat wrong; the
matrix elements under the integral sign are, in fact, expressed in the Schrödinger picture.

Clearly, the above equations do not depend on the number of spins within the bath. In fact
it is found that at short times, the exact solution discussed in the precedent sections give the
same result with fixed δ no matter what the value of N. This explains the results of [25–27].
Of course, the solutions quickly diverge from each other as we increase the time.

Equations (80)–(89) can be solved under a time-local approximation in which the matrix
elements ρ̃ij (s) are replaced by ρ̃ij (t). One can find that (α is set to 1)

ρ̃11(t) = 1

4

{
1 +
[−1 + 2

(
ρ0

11 + ρ0
44

)]
exp

{
1

δ2
[cos(2δt) − 1]

}

+ 2
(
ρ0

11 − ρ0
44

)
exp

{
1

2δ2
[cos(2δt) − 1]

}}
, (90)

ρ̃22(t) = 1

4

{
1 +
[−1 + 2

(
ρ0

22 + ρ0
33

)]
exp

{
1

δ2
[cos(2δt) − 1]

}

+ 2
(
ρ0

22 − ρ0
33

)
exp

{
1

2δ2
[cos(2δt) − 1]

}}
, (91)

ρ̃33(t) = 1

4

{
1 +
[−1 + 2

(
ρ0

33 + ρ0
22

)]
exp

{
1

δ2
[cos(2δt) − 1]

}

+ 2
(
ρ0

33 − ρ0
22

)
exp

{
1

2δ2
[cos(2δt) − 1]

}}
, (92)

ρ̃44(t) = 1

4

{
1 +
[−1 + 2

(
ρ0

44 + ρ0
11

)]
exp

{
1

δ2
[cos(2δt) − 1]

}

+ 2
(
ρ0

44 − ρ0
11

)
exp

{
1

2δ2
[cos(2δt) − 1]

}}
, (93)
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Figure 4. The variation in time of the matrix element ρ11(t) corresponding to the singlet state. The
solid curve represents the exact solution and the dashed curve represents the approximate solution
(90). The parameters are N = 10 and δ = α.
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Figure 5. The variation in time of the matrix element ρ12(t) corresponding to the singlet state. The
solid curve represents the exact solution and the dashed curve represents the approximate solution
(97). The parameters are N = 10 and δ = 0.

ρ̃14(t) = ρ0
14 exp

{
1

δ2
[cos(2δt) − 1]

}
, (94)

ρ̃23(t) = ρ0
23 exp

{
1

δ2
[cos(2δt) − 1]

}
. (95)

These solutions describe approximately the dynamics at short times (see figure 4). In fact, the
smaller the coupling constant δ, the better these solutions are.

When δ = 0 (i.e. nonlocal dynamics), then

exp

{
1

nδ2
[cos(2δt) − 1]

}
→ e−2t2/n, n = 1, 2. (96)

Thus, the second-order time-local master equation shows that the nonlocal dynamics or,
in general, the short-time behaviour follow a Gaussian decay law. Note that the solutions

14
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corresponding to the diagonal elements reproduce the asymptotic values for N → ∞, namely
ρii(∞) = 1

4 . However, those corresponding to the off-diagonal elements fail to reproduce the
steady state, since, for example, equation (95) implies that ρ23(t) → 0. To end our discussion,
let us remark that equations (81), (82), (86) and (88) can be analytically solved only when
δ = 0. For instance (see figure 5),

ρ12(t) = 1
2

[(
ρ0

12 + ρ0
34

)
e−t2/2 +

(
ρ0

12 − ρ0
34

)
e−3t2/2

]
. (97)

7. Summary

In summary, we have investigated the dynamics of two qubits coupled to separate spin star
environments via Heisenberg XY interactions. We have derived the exact form of the time
evolution operator and calculated the matrix elements of the reduced density operator. The
analysis of the evolution in time of the concurrence and the purity shows that decoherence can
be minimized by allowing the central qubits to strongly interact with each other. The short-
time behaviour, studied by deriving the second-order master equation, is found to be Gaussian.
The next step may consist in considering more central qubits and investigate whether the above
results still hold.
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Appendix A

It can be shown by induction that powers of HS1B1 and HS2B2 are given by

H 2k
S1B1

=
(

α√
N

)2k

⎛
⎜⎜⎝

(J+J−)k 0 0 0
0 (J+J−)k 0 0
0 0 (J−J+)

k 0
0 0 0 (J−J+)

k

⎞
⎟⎟⎠ , (A.1)

H 2k+1
S1B1

=
(

α√
N

)2k+1

⎛
⎜⎜⎝

0 0 J+(J−J+)
k 0

0 0 0 J+(J−J+)
k

J−(J+J−)k 0 0 0
0 J−(J+J−)k 0 0

⎞
⎟⎟⎠ , (A.2)

H 2k
S2B2

=
(

α√
N

)2k

⎛
⎜⎜⎝

(J+J−)k 0 0 0
0 (J−J+)

k 0 0
0 0 (J+J−)k 0
0 0 0 (J−J+)

k

⎞
⎟⎟⎠ , (A.3)

H 2k+1
S2B2

=
(

α√
N

)2k+1

⎛
⎜⎜⎝

0 J+(J−J+)
k 0 0

J−(J+J−)k 0 0 0
0 0 0 J+(J−J+)

k

0 0 J−(J+J−)k 0

⎞
⎟⎟⎠ . (A.4)

On the other hand, the matrix elements of H 2n+1 are given by

(H 2n+1)11 = 1
2δ[(M+

1)
n + (M−

1 )n], (A.5)
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(H 2n+1)12 = J+
α

2
√

NJ−J+

[(√
J−J+ +

√
J+J−

)(
M+

2

)n
(A.6)

+
(√

J−J+ −
√

J+J−
)(
M−

2

)n]
, (A.7)

(H 2n+1)13 = J+
α

2
√

NJ−J+

[(√
J+J− +

√
J−J+

)(
M+

3

)n
(A.8)

+
(√

J−J+ −
√
J+J−

)(
M−

3

)n]
, (A.9)

(H 2n+1)14 = (δ/2)J+J+

(
M+

4

)n − (M−
4

)n
√

J−J+J−J+
, (A.10)

(H 2n+1)21 = J−
α

2
√

NJ+J−

[(√
J+J− +

√
J+J−)

(
M+

1

)n
(A.11)

+
(√

J+J− −
√

J+J−
)(
M−

1

)n]
, (A.12)

(H 2n+1)22 = −1

2
δ
[(
M+

2

)n
+
(
M−

2

)n]
, (A.13)

(H 2n+1)23 = −(δ/2)J+J−

(
M+

3

)n − (M−
3

)n
√

J−J+J+J−
, (A.14)

(H 2n+1)24 = J+
α/2√
NJ−J+

[(√
J−J+ +

√
J−J+

)(
M+

4

)n
(A.15)

+
(√

J−J+ −
√
J−J+

)(
M−

4

)n]
, (A.16)

(H 2n+1)31 = J−
α/2√
NJ+J−

[(√
J+J− +

√
J+J−

)(
M+

1

)n
(A.17)

+
(√

J+J− −
√
J+J−

)(
M−

1

)n]
, (A.18)

(H 2n+1)32 = −(δ/2)J−J+

(
M+

2

)n − (M−
1

)n
√

J+J−J−J+
, (A.19)

(H 2n+1)33 = −1

2
δ
[(
M+

3

)n
+
(
M−

3

)n]
, (A.20)

(H 2n+1)34 = J+
α/2√

NJ−J+

[(√
J−J+ +

√
J−J+

)(
M+

4

)n
(A.21)

+
(√

J−J+ −
√

J−J+
)(
M−

4

)n]
, (A.22)

(H 2n+1)41 = (δ/2)J−J−

(
M+

1

)n − (M−
1

)n
√

J+J−J+J−
, (A.23)

(H 2n+1)42 = J−
α/2√
NJ+J−

[(√
J−J+ +

√
J+J−

)(
M+

2

)n
(A.24)

+
(√

J+J− −
√
J−J+

)(
M−

2

)n]
, (A.25)

(H 2n+1)43 = J−
α/2√

NJ+J−

[(√
J+J− +

√
J−J+

)(
M+

3

)n
(A.26)

+
(√

J+J− −
√

J−J+
)(
M−

3

)n]
, (A.27)

(H 2n+1)44 = 1

2
δ
[(
M+

4

)n
+
(
M−

4

)n]
. (A.28)
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Appendix B

Using trace properties of the lowering and raising operators, it can be shown that the nonzero
matrix elements corresponding to the initial maximally entangled states 1√

2
(|− +〉±|+ −〉) are

explicitly given by

ρ11(t) = 2−(2N+1)trB1+B2

{
U12(t)U

†
12(t) + U13(t)U

†
13(t)

}
, (B.1)

ρ22(t) = 2−(2N+1)trB1+B2

{
U22(t)U

†
22(t) + U23(t)U

†
23(t)

}
, (B.2)

ρ23(t) = ±2−(2N+1)trB1+B2

{
U22(t)U

†
33(t)

}
, (B.3)

ρ33(t) = 2−(2N+1)trB1+B2

{
U32(t)U

†
32(t) + U33(t)U

†
33(t)

}
, (B.4)

ρ44(t) = 2−(2N+1)trB1+B2

{
U42(t)U

†
42(t) + U43(t)U

†
43(t)

}
. (B.5)

Those associated with the initial state 1√
2
(|−−〉 ± |+ +〉) read as

ρ11(t) = 2−(2N+1)trB1+B2

{
U11(t)U

†
11(t) + U14(t)U

†
14(t)

}
, (B.6)

ρ22(t) = 2−(2N+1)trB1+B2

{
U21(t)U

†
21(t) + U24(t)U

†
24(t)

}
, (B.7)

ρ14(t) = ±2−(2N+1)trB1+B2

{
U11(t)U

†
44(t)

}
, (B.8)

ρ33(t) = 2−(2N+1)trB1+B2

{
U31(t)U

†
31(t) + U34(t)U

†
34(t)

}
, (B.9)

ρ44(t) = 2−(2N+1)trB1+B2

{
U41(t)U

†
41(t) + U44(t)U

†
44(t)

}
. (B.10)

Appendix C

In this appendix, we derive the probability density functions Q(μ) and R(η). Let us begin
with the random variable μ; its probability density function is simply given by the convolution
of f (r) with itself:

Q(μ) = 16
∫ μ

0
(μ − r)r e−2(μ−r)2−2r2

dr. (C.1)

Note that the upper limit of the integration over r is μ because the quantity μ − r should
be positive. The evaluation of the integral is somewhat lengthy, but elementary; the result is
given by equation (57), with erf(x) designating the error function [32].

Now consider the variable η = r − s. One should be careful when using the definition of
the convolution, since, in this case, η belongs to the interval ]−∞,∞[. We have to distinguish
between two cases, namely η � 0 and η � 0. In the first case r ∈ [0,∞[, and hence

R(η � 0) = 16
∫ ∞

0
(η + r)r e−2(r+s)2−2r2

dr

= 1

2

{
2η +

√
π eη2

(1 − 2η2)[1 − erf(η)]
}

e−2η2
. (C.2)

When η � 0, then r ∈ [−η,∞[, which implies that

R(η � 0) = 16
∫ ∞

−η

(η + r)r e−2(r+s)2−2r2
dr

= 1

2

{−2η +
√

π eη2
(1 − 2η2)[1 + erf(η)]

}
e−2η2

. (C.3)
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μ
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0.4

0.6

0.8

Q(  )μ

Figure 1. The probability density function Q(μ).

− 4 − 2 2 4
η

0.2

0.4

0.6

0.8

R(   )η

Figure 2. The probability density function R(η).

Combining (C.2) and (C.3), we obtain the expression for the probability density function of η

over the real line displayed in equation (58)
The above functions are depicted in figures 1 and 2. Clearly, R(η) is an even function of its

argument; it takes its maximum value at the origin, that is, max{R(η)} = R(0) = 0.886 227.
The maximum value of Q(μ) occurs at μ0 = 1.142 088, such that max{Q(μ)} = Q(μ0) =
0.859 664.

As a simple application, let us prove the following.

Theorem 1. The moments around the origin of the random variables μ and η are given by

〈μ2n〉 = n!

2n

[
1 + 2n+1n2F1

(
1 + n,

1

2
; 3

2
;−1

)]
, (C.4)

〈μ2n+1〉 = 	
(

3
2 + n

)
2n

[
1√
2

+ 2n(2n + 1)2F1

(
3

2
+ n,

1

2
; 3

2
;−1

)]
, (C.5)
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〈η2n〉 = 〈μ2n〉 − n
√

π	

(
1

2
+ n

)
, (C.6)

〈η2n+1〉 = 0, (C.7)

where 	(x) and 2F1(a, b; c; d) denote the Gamma and the hypergeometric functions,
respectively.

Proof. Relation (C.7) is obvious since the function R(η) is even. Let us prove (C.4). We have
that

〈μ2n〉 =
∫ ∞

0
μ2nQ(μ) dμ

= 2In+1 − In + 2Yn, (C.8)

where

In =
∫ ∞

0

√
πμ2n e−μ2

erf(μ)dμ, (C.9)

Yn =
∫ ∞

0
μ2n+1 e−2μ2

dμ. (C.10)

To calculate Yn and In, introduce the functions of the real variable x > 0:

Yn(x) =
∫ ∞

0
μ2n+1 e−μ2(1+ 1

x
) dμ, (C.11)

In(x) =
∫ ∞

0

√
πμ2n e−μ2/xerf(μ) dμ. (C.12)

The first integral can be easily evaluated:

Yn(x) = 1

2

( x

1 + x

)n+1
∫ ∞

0
χn e−χ dχ = n!

2

( x

1 + x

)n+1
. (C.13)

The second integral satisfies

dIn(x)

dx
= 1

x2
In+1(x). (C.14)

Integrating by parts the rhs of (C.12) with respect to μ and using (C.13) yield

In+1(x) = x(2n + 1)

2
In(x) +

xn!

2

( x

x + 1

)n+1
. (C.15)

Here, we have used the fact that erf(x)
′ = 2e−x2

/
√

π .
Let In(x) = n!xn+1gn(x). Then from (C.15), we have

2(n + 1)gn+1(x) = (2n + 1)gn(x) +
1

(x + 1)n+1
. (C.16)

On the other hand, equation (C.14) implies that

x
dgn(x)

dx
+ (n + 1)gn(x) = (n + 1)gn+1(x). (C.17)

Combining the last two equations yields the following first-order differential equation for the
function gn(x):

2x
dgn(x)

dx
+ gn(x) − 1

(x + 1)n+1
= 0. (C.18)
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Differentiating both sides of (C.18), and again using (C.16), we obtain[
d2

dx2
+

(
3

2x
+

n + 1

x + 1

)
d

dx
+

n + 1

2x(x + 1)

]
gn(x) = 0. (C.19)

By setting y = −x and hn(y) = gn(−x), we obtain[
d2

dy2
+

(
3

2y
+

n + 1

y − 1

)
d

dy
+

n + 1

2y(y − 1)

]
hn(y) = 0, (C.20)

which should be compared with the hypergeometric equation[
d2

dy2
+

(
c

y
+

1 + a + b − c

y − 1

)
d

dy
+

ab

y(y − 1)

]
2F1(a, b; c; y) = 0. (C.21)

Thus,

a = n + 1, b = 1
2 , c = 3

2 . (C.22)

It follows that

In(x) = n!xn+1
2F1

(
n + 1, 1

2 ; 3
2 ;−x

)
. (C.23)

Putting x = 1 yields

In = n!2F1

(
n + 1,

1

2
; 3

2
;−1

)
, Yn = n!

2n+2
. (C.24)

Also, using (C.15), we obtain

2In+1 = (2n + 1)n!2F1

(
n + 1,

1

2
; 3

2
;−1

)
+

n!

2n+1
, (C.25)

from which (C.4) readily follows. The other moments can be evaluated with a similar method.
�
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